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EXECUTIVE SUMMARY 
Rice husk ash (RHA) is an agricultural by-product in the United States as well as in all over the 
world. From the chemical perspective, RHA has pozzolanic properties, which make it a potential 
supplementary cementitious material. In this study, two different types of RHA sample (600-RHA: 
600 µm, and 150-RHA: 150 µm) with different particle sizes were utilized to evaluate their 
application in producing low strength flowable fill concrete (FFC). For comparative analysis, 
flowable fill concrete produced by using Class C Fly Ash (CFA) was also incorporated in this 
study. Two different percentages (40% and 60%) of each type of RHA were used as partial 
replacements of cement for producing modified FFC samples.  

The physical and chemical data (e.g., moisture content and loss on ignition) of RHA and CFA 
particles were collected and analyzed to verify if they meet certain requirements and specifications. 
Different laboratory tests (e.g., flow, temperature, unit weight, compressive strength, and tensile 
strength) on fresh and hardened FFC mixtures were performed to evaluate their physical and 
mechanical properties. To evaluate the reactivity and expansion of the aggregate in the presence 
of alkaline water, the Alkali-Silica Reaction (ASR) tests were also performed on the modified FFC 
mortar bars. Considering the outcome of the different physical properties of RHA modified FFC, 
an optimum dose of RHA has also been determined. Additionally, two field demonstration projects 
have been completed to verify the field mixing and constructability of RHA-modified FFC. 

Fresh FFC tests resulted that different RHA modified FFC required different amounts of water to 
maintain a desired level of consistency. More water contents were required for RHA modified FFC 
mixtures compared to the control sample (FFC made with CFA). Almost all types of modified 
FFC mixtures satisfied the minimum unit weight required for an FFC mix. The hardened FFC tests 
showed that both amounts of RHA-modified FFC samples made with 600-RHA showed lower 
compressive strength compared to the control sample. A 40% 150-RHA FFC mixture resulted in 
a significant increase in compressive strength. Similar results were observed for the tensile strength 
tests. Cost comparison between conventional FFC mixture and RHA modified mixture revealed 
that RHA modified FFC mixture would result in 30% lower cost compared to the regular FFC. 
With the help of Arkansas Ready Mix Concrete Association (ARMCA), the research team has 
organized a workshop on the application of RHA in flowable fill and laid down RHA-modified 
FFC mix on a field demonstration site at Razorback plant site in Jonesboro, AR. This workshop 
and field demonstration helped the research team to engage the professional engineers in open 
discussion on current research on assessing the feasibility of RHA as a construction material in 
Arkansas. The second field demonstration site in a parking lot of the Facility Management (FM) 
department at Arkansas State University was also successful.      
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1. INTRODUCTION 
Controlled low-strength material (CLSM), also commonly known as flowable fill, is one kind of 
slurry, which can be used to fill different types of cavities without any need of vibration. Flowable 
fill is a low strength material, which consists of a mixture of sand, Portland cement, fly ash and 
water. It has self-leveling capabilities with a varying compressive strength from 30 to 1200 psi 
depending on the field application. According to the application of flowable fill, it may also be 
known as CLSM, lean mix backfill, controlled density fill, or flowable fill mortar. In the 
construction site, different kinds of settlements in roadways and trenches, backfills have been a 
long-standing problem. Moreover, cutting and backfilling trenches beside roadways often disrupts 
the traffic flow. It has also been seen that the differential settlement is usually caused by the 
insufficient compaction of trench backfill material. The standard practice for backfilling trenches 
includes the placement of 6-inches of the soil layer and compacted until a minimum density is 
achieved. These multiple layers of soil filling and testing for a single backfill area require several 
days to complete. A search for a rapid solution for the backfilling problem has developed the use 
of low-strength flowable fill concrete as a backfill material. Different agencies such as ready-mix 
concrete associations, utility companies, and construction associations in cooperation with the 
respective department of transportation (DOT) have been continuously trying to develop the 
standards, specifications, test procedure and research methods of flowable fill concrete. 

The material composition of flowable fill provides an opportunity to use waste material in 
producing flowable fill concrete. A continuous increase in the need for construction material has 
been depleting the natural resource, which causes an adverse effect on the natural environment. 
Among all types of construction material, concrete has been the topmost consumed construction 
material. According to the Statista, in 2016, 94 million metric tons of cement have been produced 
all over the USA.  The annual growth of cement production in 2017 was 2.6% (1), which involved 
a great amount of natural depreciation. To encounter increasing natural pollution, practitioners 
have tried to develop and adopt modern technologies  incorporating sustainable use of resources 
and constructions. To this end, rice husk ash (RHA) can be a potential alternative source of 
cementitious material.   

Rice husk (RH) is an agricultural by-product from the rice industry. The main use of RH is as a 
biofuel in the rice milling company, which ultimately generates a large volume of ashes. Every 
year the United States produces a large amount of rice. As per the US Department of Agriculture’s 
national agricultural statistics, about 25.1 million pounds of rice was produced in the United States 
in 2016, which eventually generated a large quantity of rice husk ash. The pozzolanic properties 
of RHA define its use in the concrete industry. Through the controlled burning chambers, RHA 
can be transformed into highly reactive pozzolanic material (2). The hydration process between 
RHA and cement, a secondary Calcium-Silicate-Hydrate (C-S-H) gel is formed, which determines 
the pozzolanic activity of the RHA. In addition, the particle size of RHA also greatly influences 
the hydration process in concrete (3). Moreover, in the field of cementitious products, RHA can 
be used as a mineral admixture. It has been observed that concrete properties of blended 
cementitious materials vary with the source of RHA (4). 

In this study, RHA has been used as a supplementary cementitious material in producing flowable 
fill concrete (FFC). Two different percentages of rice husk ash (RHA) by weight (40% and 60%) 
of total cementitious material have been utilized in the study. For the property evaluation of 
different RHA particle sizes in concrete, two different RHA sizes (600-RHA: 600 µm, and 150-
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RHA: 150 µm) were selected in this study. Moreover, an additional FFC mix containing Class C 
fly ash and cement had been incorporated in this study to have a comparative analysis. Different 
laboratory tests, both on fresh modified flowable fill concrete (FFC) and hardened FFC, were 
performed to evaluate their physical and mechanical properties. To evaluate the reactivity of the 
aggregate in the presence of alkaline water, Alkali-Silica Reaction (ASR) tests were also 
performed on the modified FFC mortar bars. Considering the outcome of the different physical 
properties of RHA modified FFC, an optimum dose of RHA has also been determined. 
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2. OBJECTIVES 
The main objective of this study is to evaluate the usage of RHA in producing low strength and 
self-consolidating flowable concrete. Specific technical objectives of this study are given as 
follows: 

• Prepare RHA modified FFC and determine their workability and flow behavior; 
• Evaluate the effect of curing time and environmental conditions on strength properties 

(compressive, tensile, elastic modulus, etc.) and durability (Alkali-Silica Reactivity SR)  
of RHA-modified FFC; and 

• Evaluate different dosages of RHA as a pozzolan in preparing FFC. 

These objectives have been accomplished by conducting different experiments on RHA modified 
FFC samples in the laboratory. Also, a field demonstration project on RHA modified FFC has been 
completed to observe its constructability and field performance to make meaningful conclusions 
of this project work. 
 

 



4 

3. LITERATURE REVIEW 
The findings of different previous studies in the field of sustainable use of RHA in the construction 
industry have been overviewed thoroughly. A detailed literature review using relevant research 
articles has been completed. The literature review primarily focused on the chemical and physical 
composition of RHA and its effects on the production and durability of concrete. The effect of 
physical properties such as particle size and specific surface area of RHA on concrete properties 
have also been examined. In this regard, reputed journals, periodicals and technical reports from 
government and non-government agencies, conference proceedings were consulted in this study. 
Specifically, technical articles published in the journals and periodicals of the American Society 
of Civil Engineers (ASCE), Transportation Research Board (TRB), the Federal Highway 
Administration (FHWA), and US Departments of Transportation (DOTs), and, the American 
Society for Testing and Materials (ASTM) test methods and specifications have thoroughly been 
reviewed. 

A number of researchers have studied the material composition of RHA to predict the performance 
of RHA as pozzolana. The chemical properties of RHA particles reported by different researchers 
are presented in Table 1. Most researchers stated that RHA particles contain more than 85% of 
silica, but it varies from source to source.  

Table 1. Chemical properties of RHA (wt, %) (5). 

Study SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O Loss on 
Ignition 

Mehta (2) 87.2 0.15 016 0.55 0.35 0.24 1.12 3.68 8.55 

Zhang et al. (6) 87.3 0.15 0.16 0.55 0.35 0.24 1.12 3.68 8.55 

Bui et al. (7) 86.98 0.84 0.73 1.4 0.57 0.11 2.46 - 5.14 

  
According to Givi et al. (5), the high percentage of silica content in RHA makes it a potential 
pozzolanic compound. Thus, for the pozzolanic activity, RHA can be used as a partial replacement 
of Portland cement while producing concrete. The chemical reactions of the pozzolanic material 
start when the di-calcium silicate (C2S) and tri-calcium silicate (C3S) compounds of cement come 
into contact with water during the hydration process. Equation 1 describes the chemical reactions 
of the hydration process which result in calcium silicate hydrate (C-S-H) and calcium hydroxide 
(Ca (OH)2). Equation 3 shows the reaction between Ca(OH)2, alumina and water which ultimately 
form calcium aluminate hydrate (C-A-H). Both C-S-H and C-A-H are produced as a cement gel 
where the presence of excess CH gel is harmful to concrete strength. The presence of pozzolanic 
material in concrete causes a reaction between silica content and excess Ca (OH) 2 that produces 
additional C-S-H gels (Equation 4). The excess amount of C-S-H gel fills the pores of the concrete 
and decreases the capillary action, which eventually results in stronger and more durable concrete. 
Different experiments on RHA modified concrete concluded that the addition of RHA resulted in 
improved mechanical properties of concrete, according to Givi et al. (5). 
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2(3CaO-SiO2) + 6H2O  3CaO.2SiO2.3H2O + 3Ca (OH)2  [1] 

(C3S)                                    (C-S-H)                (CH) 

2(2CaO-SiO2) + 4H2O  3CaO.2SiO2.3H2O + Ca (OH)2 [2] 
  (C2S)                           (C-S-H)        (CH) 

Ca (OH)2 + H2O + Al2O3  A12O3.Ca(OH)2.H2O [3]        
   (CH)                                            (C-A-H) 

SiO2 + Ca (OH)2 + H2O  CaO.SiO2.H2O [4] 

Ahsan et al. (8) studied the RHA used in the current as an SCM in preparing regular concrete. The 
researcher stated, RHA has the potential of being an SCM because of its pozzolanic activity. The 
researcher studied three different graded RHA (600-RHA, 150-RHA, and 44-RHA) in this study. 
Each type of RHA samples with two different percentages (10% and 20%) of replacement of Type 
I Ordinary Portland Cement (OPC) were added while making modified concrete samples. It was 
found that the RHA modified concrete samples (600-RHA and 150-RHA) showed reduced 
strength properties compared to the regular concrete. However, coarse RHA particles showed the 
potential use in producing flowable fill concrete. On the contrary, the finer RHA particle showed 
improved concrete properties. These researchers concluded about the potential use of 44-RHA as 
SCM in producing regular concrete, and the coarse RHA could be used in backfill and flowable 
fill as a controlled low strength material. 

Rahmat et al. (9) studied concrete mixtures with 0-30% RHA and their mechanical properties along 
with their durability. In this study, the long-term (11 months) durability of the specimens exposed 
to aggressive environments (5% NaCl with wet-dry cycling) was evaluated. The degree of damage 
was studied by determining the percentage of reduction of compressive strength and chloride ions 
penetration as compared to the control specimens that had been cured normally. The experimental 
results exhibited that the partial replacement of cement by RHA improved the durability and the 
homogeneity of concrete, but it hindered the early age compressive strength of concrete. In terms 
of chloride penetration, it was evident that the blending of Portland cement with RHA was 
beneficial from the standpoint of the prevention of diffusion of Cl ions. The authors stated that the 
scanning electron microscopy (SEM) of the microstructure of mortar specimens confirmed that 
RHA filled up the concrete pores, which explained the superior mechanical properties of modified 
concretes.  

Hwang et al. (10) used RHA from South Vietnam to investigate its effects on concrete properties. 
Before the application of RHA in concrete, RHA was grounded for one hour to improve the 
pozzolanic activity. The non-ground RHA and ground RHA were used to test the strength activity 
index according to ASTM C311. Test results showed that the non-ground RHA could also be 
applied as a pozzolanic material, and with the decrease of non-ground RHA’s average particle size 
brought a positive effect on the compressive strength of mortar. The compressive strength of 
cylindrical concrete specimens was found to be in the range of 47–66 MPa. The authors also stated 
that 20% of ground RHA could be added to the concrete mix without having any adverse effect on 
the strength and durability of concrete. 
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Ahmadi et al. (11) studied the development of mechanical properties up to 180 days of self-
compacting and ordinary concretes with RHA. Two different replacement percentages of cement 
by RHA (10%, and 20%) and two different water/cementitious material ratios (0.40 and 0.35), 
were used for both of self-compacting and normal concrete specimens. It was found that 
replacement level up to 20% of OPC in concrete would reduce the utilization of cement and 
expenditures. It was also reported that pozzolanic reactions of RHA in concrete were low in early 
ages, but by aging the specimens to more than 60 days, a considerable effect on strength properties 
was observed. With the aging and hardening of concrete mixes, the modulus of elasticity, 
compressive strength, and flexural strength increased. The unmodified regular concrete mixes 
showed a higher modulus of elasticity compared to the control sample, and no impact of water-
cement ratio was observed in the modulus of elasticity.   

Nataraja and Nalanda (12) studied three industrial by-products, namely CFA, RHA, and quarry 
dust (QD) as constituent materials in CLSM. In this study, mixture proportions were developed 
for the CLSM containing the aforementioned by-products, and different laboratory tests were 
performed to evaluate various concrete properties such as flowability, unconfined compressive 
strength (UCS), stress-strain behavior, density, water absorption, and volume changes. From the 
test results, it was observed that all three by-product materials could be successfully used in CLSM. 
It was also stated that the engineering properties of CLSM such as flowability, compressive 
strength, modulus of elasticity, density and volume change could be achieved satisfactorily using 
a very small amount of cement and a large amount of these industrial wastes. The water-cement 
ratio varied linearly to maintain a specific consistency in the concrete mixes. The UCS test results 
showed that the strength of the CLSM mixtures varied over a wide range. The strength mainly 
depends on the cement and water content, the higher the cement content, the higher the strength 
and vice versa.   

Safiuddin et al. (13) studied the hardened properties of self-consolidating high-performance 
concrete incorporating RHA. In this study, the researcher produced different types of modified 
self-consolidated concrete depending on different water/binder (W/B) ratios, RHA contents, and 
air contents. Here, the concrete mixtures were designed based on the W/B ratios of 0.30, 0.35, 
0.40, and 0.50, where RHA was substituted with 0% to 30% of cement by weight. The RHA 
particle used in this study had a median particle size of 6 µm and about 85% of the RHA particles 
were smaller than 15 µm. For the evaluation of RHA modified self-consolidating concrete, 
compressive strength, ultrasonic pulse velocity, water absorption, total porosity, and true electrical 
resistivity tests have been performed. The self-compacting concrete with lower W/B ratio and 
higher RHA content showed increased compressive strength and electrical resistivity, whereas the 
water absorption and total porosity decreased. Excellent hardened concrete properties were 
achieved with a 15% RHA, which was also found to have the required slump flow and air content. 
In addition, it was also found that the increased air content caused the decrease of compressive 
strength since the increased void in the concrete decreased the load-carrying capacity of concrete. 

Ali et al. (14) studied the feasibility of the use of RHA for low-cost self-compacting concrete 
(SCC) production. It can be noted that deformability and segregation resistance are the two main 
properties of SCC. Deformability is the ability to flow or deform under its own weight. Segregation 
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resistance is the ability to remain homogenous at the time of construction. High range water 
reducing admixtures are usually utilized in the construction project to develop sufficient 
deformability. In addition, chemical viscosity modifying admixture (VMA) is used to ensure 
segregation resistance. These viscosity modifying admixtures are very expensive and the main 
cause of the cost increase of SCC. So, in an attempt to produce low-cost SCC, it is very important 
to find an alternative viscosity modifying agent. Hence, RHA was considered as an alternative 
modifying agent. From the experimental results, it was found that different SCC mixes had slump 
value in the range of 595–795 mm, L-box ratio ranged from 0 (stacked) to 1, and flow time ranged 
from 2.2 to 29.3 s. About four out of nine mixes were found to satisfy the requirements suggested 
by the European Federation of National Trade Associations. The compressive strength of RHA 
modified SCC was compared to that of the control sample. A cost analysis showed that the 
production of certain SCC mix would result in a reduction of 42.47% cost with the incorporation 
of RHA.   

Suaiam and Makul (15) used limestone powder (LS) as a modifying agent in self-compacting 
concrete (SCC) in which a portion of fine aggregate was replaced with RHA. The SCC mixtures 
were designed to produce a control slump flow. The fine aggregate was replaced up to 100% by 
RHA and LS by volume. A number of laboratory tests including T50 slump flow, J-ring flow, 
blocking assessment, V-funnel, air density, and compressive strength of the SCC mixtures were 
performed. Experimental results showed that the fresh properties of RHA-containing SCC 
mixtures were improved containing less than 60% RHA by volume. Test results also exhibited that 
SCCs containing LS exhibited superior hardened properties, and the fresh and hardened properties 
of SCCs made using RHA were substantially improved when combined with LS. The unit weight 
of the SCC was found to decrease with the increase of the RHA content and increase with the 
increase of the LS content. A combination of RHA and LS made lighter SCC mixtures compared 
to the control mixtures. The compressive strength was found to be decreased at higher water-binder 
ratios and RHA or LS content. An optimum replacement level of fine aggregate by RHA and LS 
provided a higher development of compressive strength at the early ages due to the filling effects 
and pozzolanic reactions. The authors stated that limestone powder contained the potentiality to 
improve self-compacting concrete mixtures in which the untreated RHA was used as a partial fine 
aggregate replacement. 

Divya et al. (16) studied the effect of replacing cement content with RHA as an SCM in SCC and 
observed the fresh flow (slump flow, V-Funnel, U-box, L-Flow), mechanical strength 
(compressive and split tensile), and durability properties (porosity and rapid chloride permeability 
test) at 7, 28 and 56 days. In this study, the authors prepared concrete specimens with 0, 10, 15 
and 20% RHA. Experimental results showed that a 20% RHA replacement showed the minimum 
specified workability and an increase of about 25% strength at 7 days, 33% at 28 days and 36% at 
56 days was observed with RHA content of 20% RHA when compared to the control mix. It was 
also found that maximum split tensile strength was 3.8 N/mm2 at 28 days and 4.0 N/mm2 at 56 
days for 15% RHA replacement. The authors mentioned that the inclusion of RHA as the partial 
replacement (up to 20%) to cement improved the strength properties and durability properties . 
SCC mixes made with RHA reduced the chloride ion penetrability where the increase of 
replacement of RHA decreased the charge passed. On the other hand, a very low permeability was 
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achieved by the 15% RHA replacement to cement and moderate permeability was recorded for the 
control mix. Moreover, X-ray powder diffraction (XRD) and scanning electron microscope (SEM) 
analyses were done to reveal the increased formation of CSH gels for all mixes, which helped to 
explain the increased compressive strength for 15% RHA concrete. Pores and cracking were at the 
maximum level for the control mix. The densest structure was observed for 15% replacement with 
RHA, which resulted in the highest compressive strength for the mix. 
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4. METHODOLOGY 
This study examined the feasibility of the use of RHA in producing low strength FFC. Different 
laboratory tests were performed to observe the effect of RHA in FFC. The properties of the 
ingredients of FFC mix such as fine aggregate, RHA, fly ash, and Type I OPC were also 
determined prior to the start of the laboratory experiments of concrete samples. Concrete cylinders 
were made from RHA modified FFC mixes. Moreover, fresh FFC mixtures were tested for flow 
consistency, temperature, unit weight, and air content. The hardened FFC samples were tested for 
compressive strength, tensile strength, modulus of elasticity, and Poisson’s ratio test. The adverse 
effects of alkaline water on RHA modified FFC were also examined through the ASR test. 

4.1. Material Selection and Collection 
This section presents information regarding materials that were used in the preparation of making 
FFC samples. The design mixes prepared in the laboratory were needed to represent the in-situ 
condition from field application. In order to maintain the relevance to the field condition, the 
materials used in making the modified FFC samples in the laboratory were also collected from the 
same ready-mix concrete plant that regularly produces FFC mix for different construction sites. 
An FFC mix design has also been collected from the respective ready-mix concrete plant. In 
addition, after the collection of all materials, they were adequately examined in the laboratory to 
ensure the ASTM standard specifications. 

4.1.1. Cement 
The cement, which was used in this project work was Type I Portland cement. According to the  
Arkansas Department of Transportation (ArDOT) standard, any cement used in a construction site 
needs to be collected from an ArDOT approved manufacturer. Table 2 shows the detail information 
regarding the cement source. 

Table 2. Source information of collected cement. 

Supplier Source Plant 
Holcim (US) Inc. (a Lafarge 

Holcim Company) 
Bloomsdale, MO Ste. Genevieve Plant. 

 
NEAR Ready Mix, Jonesboro plant has provided the required cement for this study. The main 
manufacturer of the cement is Holcim (US) Inc., which is an ArDOT approved manufacturer. In 
addition, the collected cement met all specifications of ASTM C150 (17). 

4.1.2. Fly Ash 
In the concrete industry, fly ash has been used as a pozzolanic material to replace some portion of 
Portland cement while producing concrete. In the case of FFC, the application of fly ash usually 
improves the strength of flowable fill. Moreover, it helps to increase the workability, pump ability, 
cohesiveness, compressive strength, and durability of concrete (18).  

In this study, fly ash was collected from the same ready-mix concrete plant as cement. Class C fly 
ash has been used in this study. The source information of the fly ash is given in Table 3. 
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Table 3. Source information of collected fly ash. 

Supplier Source 
Headwaters Resources Independence Steam Station - Newark, AR 

 
The collected fly ash source is in the ArDOT approved supplier list. It also met the ASTM C618-
19 specifications for its use in preparing concrete. Figure 1 shows the pictorial view of the  fly ash 
used in this project. 

 
Figure 1. Fly ash samples collected from an approved supplier. 

4.1.3. Rice Husk Ash 
The primary concern material of this study is RHA, which is a by-product in the rice milling 
industry. Two different types of RHA samples were incorporated into this study. The sources of 
RHA samples along with their detailed information are shown in Table 4.  

Table 4. Source information of RHA samples used in this study. 

Material Description Source of Material 
600-RHA Coarse RHA with a particle size of 600 µm Riceland Food, Inc., Stuttgart, AR 
150-RHA Finer RHA with a particle size of 150 µm Riceland Food, Inc., Stuttgart, AR 

 
Figure 2 shows the pictorial view of RHA samples. It is evident that RHA samples are dark black 
in color, which indicates the higher percentage of unburnt carbon.  
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Figure 2. 600-RHA and 150 RHA samples. 

Gradation of RHA: The grain size distribution of each type of RHA was determined by using 
ASTM standard sieves. The gradation curves of 600-RHA and 150-RHA can be found in Appendix 
A. The gradations of these RHA samples were used to measure their average particle sizes. 

4.1.4. Fine Aggregate 
The collection of the fine aggregate was done similarly to the other ingredients. Table 5 provides 
the source information of the fine aggregate. The fine aggregate used in this study was silica sand. 
Tests on the fine aggregate were performed accordingly ASTM and ArDOT specifications. 
Screening and gradation were also performed for the fine aggregate. 

Table 5. Source information of fine aggregate used in this study. 

Supplier Source 
Brenda Kay Sand, LLC Benton MO 

 
The silica sand used in this study was found to be a light gray to sandy white color. According to 
Section 501 of the ArDOT specifications, the silica sand needs to be composed of naturally 
occurring hard, strong, durable, uncoated grains of quartz and graded from coarse to fine. 

Gradation of Fine Aggregate: Gradation is one of the most important characteristics of fine 
aggregate. It influences almost all concrete properties such as relative aggregate ratios, water-
cement requirements, workability, economy, porosity, shrinkage, and durability. In the case of 
flowable fill concrete, the gradation of fine aggregate is one of the primary concerns. Usually, 
aggregate gradation is the distribution of particle sizes expressed as a percent of the total weight. 
The standard practice of gradation analysis has been performed for the fine aggregates used in this 
study. Then the gradation data was compared with the ASTM C33 (19) upper and lower limits. 
Table 6 shows the comparison between ASTM C33 (19) upper and lower limits, and gradation for 
the fine aggregate used in this project.   
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Table 6. ASTM C33 and derived fine aggregate gradation. 
Sieve Specification  % Passing (ASTM C33) Laboratory Data 

9.5 mm (3/8 in) 100 100 
4.75 mm(No. 4) 95 to 100 96.28 
2.36 mm (No. 8) 80 to 100 88.32 
1.18 mm (No. 16) 50 to 85 80.89 
0.595 mm (No. 30) 25 to 60 65.96 
0.297 mm (No. 50) 5 to 30 21.36 
0.149 mm (No.100) --  1.65 

75 μm (No. 200) 0 to 10 --  
 
Figure 3 presents the ASTM C33 upper and lower limits of the fine aggregate and also the 
gradation of the used fine aggregate. It is seen that the fine aggregate, which was used in this study 
is nearly between the ASTM C33 upper and lower limits.  

 
Figure 3. Gradation of Fine Aggregates – ASTM Specification. 

Physical Properties of Fine Aggregate: The physical properties of the fine aggregates used in 
this study were determined as per ASTM standards. Table 7 presents the physical properties of the 
fine aggregate. 
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Table 7. Physical properties of fine aggregates (Silica sand). 
Physical Properties Used Fine Aggregate 
Fineness Modulus 2.46 

Bulk Specific Gravity (SSD) 2.63 
Absorption 0.55% 

Moisture Content 0.15% 
 
Storage of Fine Aggregate: After the collection of the fine aggregate from a local ready-mix 
concrete plant, they were stored in the designated place of the laboratory. Figure 4 shows the fine 
aggregate storage area in the laboratory. 

 
Figure 4. Laboratory storage of fine aggregate. 

4.2. Data Collection of RHA and Fly Ash Samples 
Physical and chemical data of different RHA samples and fly ash were collected from the 
respective suppliers. Table 8 shows different physical and chemical data of RHA and fly ash. The 
properties of RHA and fly ash samples were compared with AASHTO M 321 (Standard 
Specification for High-Reactivity Pozzolans for Use in Hydraulic-Cement Concrete, Mortar, and 
Grout) and ASTM C 618 (Standard Specification for Coal Fly Ash and Raw or Calcined Natural 
Pozzolana for Use in Concrete) specifications. 

From Table 8, it is seen that both RHA samples met the AASHTO M 321 specifications for reactive 
oxides, whereas the fly ash did not meet the AASHTO M 321-04 specification. The fly ash met 
ASTM C618 specifications for fly ash or natural pozzolan. The AASHTO M 321 specification is 
given for all high-reactive pozzolans, whereas ASTM C618 is given for only fly ash or natural 
pozzolan. It is also seen that none of the RHA samples met the specifications for moisture content 
and loss on ignition. Before the collection of RHA samples, 600-RHA was treated mechanically 
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and heating to obtain 150-RHA. The mechanical and heat treatments were done at the Riceland 
facility in Stuttgart, AR. 

Table 8. Properties of RHA and Class C Fly Ash (CFA). 

Chemical Properties 600- RHA 150-RHA Class C Fly Ash AASHTO  M 321 

Reactive oxides 
(SiO2+Al2O3+ Fe2O3) 

95.50% 95.50% 60.02% 75% (minimum) 

Loss on ignition (LOI) 8.98% 8.98% 0.22% 6% (maximum) 
Moisture content 3-5% 3-5% 0.04% 3% (maximum) 

 

4.3. Mix Design 
The following section discusses the design processes of FFC mixtures. A control mix design was 
collected from a ready-mix concrete plant. Compared to that mix design a similar FFC mix was 
prepared in the laboratory using the same ingredients. Design mixes for different RHA modified 
flowable fill concrete were determined through a number of trials of FFC mixes. Similar flow 
consistency was maintained for all modified FFC mixes. Different RHA samples (600 RHA and 
150 RHA) have been added to the FFC mixes as partial replacement of cementitious material. 
Different amount (40% and 60%) of RHAs have been added in the FFC mix. For this study, Type 
I OPC was considered and it had a specific gravity of 3.15. Using the ACI provided charts and 
specifications, the amount of fine aggregate, water, and cement were determined for per cubic yard 
of concrete. Later, a moisture correction factor for the fine aggregate was applied. Different mix 
proportions for different types of modified FFC mixes are presented in Table 9. 

Table 9. Mix proportion for different types of modified FFC mixtures. 

Types of FFC Mix Fly Ash 
(%Wt) 

Cement 
(%Wt) 

600 
RHA 

(%Wt) 

150 RHA 
(%Wt) 

W/B Flow 
Dia. 
(in) 

Mix-1 (70% Fly Ash) 70 30 0 0 1.7 8 
Mix-2  

(40% 600 RHA) 
0 60 40 0 2.3 8 

Mix-3  
(60% 600 RHA) 

0 40 60 0 2.78 8 

Mix-4  
(40% 150 RHA) 

0 60 0 40 2.3 8 

Mix-5  
(60% 150 RHA) 

0 40 0 60 2.37 8 

 

4.4. Laboratory Tests on RHA-Modified Flowable Fill Concrete 
Various ASTM test standards have been performed to ensure the quality of the flowable fill 
concrete. Different construction agencies and many DOTs such as Arkansas, California, Colorado, 
Delaware, Florida, Georgia, Illinois, Indiana, Kansas, Kentucky, Maryland, Massachusetts, 
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Michigan, Minnesota, Nebraska, New Hampshire, New Mexico, North Carolina, Ohio, Texas, 
Washington, West Virginia, Wisconsin etc. have their own specification regarding the application 
of flowable fill concrete. However, the standards and specifications of flowable fill concrete vary 
from state to state which also hinders the widespread use of flowable fill concrete. The primary 
test methods which were followed in this study are summarized below (Table 10). 

Table 10. ASTM standards on controlled low strength material (CLSM). 
ASTM Specification 

Number 
ASTM Standard Name 

ASTM D 4832 Standard Test Method for Preparation and Testing of Controlled Low 
Strength Material (CLSM) Test Cylinders 

ASTM D 6103 Standard Test Method for Flow Consistency of Controlled Low 
Strength Material 

ASTM D 6023 Standard Test Method for Unit Weight, Yield, Cement Content, and 
Air Content (Gravimetric) of Controlled Low Strength Material 
(CLSM) 

ASTM D 6024 Standard Test Method for Ball Drop on Controlled Low Strength 
Material (CLSM) to Determine Suitability for Load Application 

ASTM D 5971 Standard Practice for Sampling Freshly Mixed Controlled Low 
Strength Material 

 
It has been observed that high strength of FFC mixes sometimes create difficulty to excavate at 
the later stages, which eventually increases additional cost and labor. Other technical issues such 
as workability and compatibility for different types of FFC have also been faced. 

It can be noted that some tests pertinent to regular concrete, mentioned in the original proposal, 
are not applicable for FFC. For instance, the workability (slump test) is an indicator of regular 
concrete, but the workability of FFC mixes is obtained by flow test. It is obvious that the slump 
value of FFC mixes is about 12 inches, and it has been the case for the current study. Also, 
properties of hardened concrete such as elastic modulus and Poisson’s ratio are not important for 
FFC mixes as they are not used for preparing any horizontal or vertical structures. Rather, 
compressive strength is the most important strength parameter and it has been investigated 
thoroughly.      

4.4.1. Standard Practice for Sampling Freshly Mixed Controlled Low Strength 
Material (ASTM D 5971) (20) 
According to this test method, representative samples from freshly mixed modified FFC mixtures 
have been collected. Test samples were large enough to perform different tests to ensure quality. 
This procedure includes sampling from revolving drum mixers. Figure 5 shows the sampling of 
FFC mixture. 
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Figure 5. Sampling of RHA-modified FFC mixtures. 

4.4.2. Standard Test Method for Preparation and Testing of Controlled Low Strength 
Material (CLSM) Test Cylinders (ASTM D 4832) (21) 
Cylindrical samples from different types of FFC mixes have been prepared to determine the 
compressive strength. Plastic molds were used to prepare samples. A compression machine was 
used to apply load until the specimen failed.  

The compressive strength of the specimen is calculated as follows: 
 

f' c = 𝑃𝑃
𝐴𝐴
                                                                      [5] 

 
where: 
 f’c = compressive strength in pounds per square inch (lb/in2), 
P = maximum failure load attained during testing in pounds (lb), and 
A = load area of the specimen in square inches (in2). 

Figure 6 shows the pouring and making of the cylindrical samples.  
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Figure 6. Pouring of  concrete in a cylindrical plastic mold. 

Figure 7 shows the cylinder samples made from modified FFC mixtures. 
 

 
Figure 7. Cylindrical samples made from FFC Mixes. 
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Figure 8. Compressive strength test. 

This compressive strength test (Figure 8) helps to maintain the standard quality during the 
construction phase according to the compliance requirements. 

4.4.3. Standard Test Method for Flow Consistency of Controlled Low Strength 
Material (ASTM D 6103) (22) 
This test method determines the fluidity of CLSM mixtures for use as backfill or structural fill. 
This test method is applicable to the fresh FFC mixtures, which contains only fine aggregates 
where the maximum particle size is 19.0 mm (3/4 in.) or less, or to the portion of CLSM that passes 
a 19.0 mm sieve. An open-ended cylinder was placed on a flat, level surface and filled with fresh 
CLSM. The cylinder was raised quickly so the CLSM will flow into a patty. The average diameter 
of the patty was determined and compared to established criteria. Figure 9 shows the flow 
consistency test performed for different types of FFC mixtures. 
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Figure 9. Flow consistency test. 

4.4.4. Standard Test Method for Unit Weight, Yield, Cement Content and Air Content 
(Gravimetric) of Controlled Low Strength Material (CLSM) (ASTM D 6023) (23) 
The density of the flowable fill concrete/CLSM has been determined by filling a measure with 
CLSM, determining the mass, and calculating the volume of the measure. Density was calculated 
by dividing mass by volume (Figure 10). The air content of the CLSM was calculated using an air 
meter (Figure 11). 

 
Figure 10. Measuring the unit weight of CLSM mixtures. 
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Figure 11. Measuring air content of CLSM mixtures. 

4.4.5. Time of Setting of FFC Concrete Mixtures by Penetration Resistance 
This test method covers the determination of the time of setting of concrete, with a slump greater 
than zero, by means of penetration resistance measurements on mortar sieved from the concrete 
mixture. This test method is suitable for use only when tests of the mortar fraction will provide 
the information required. 

 
Figure 12. Setting time test using universal penetrometer. 
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In this experiment the weight of the test plunger itself was 47.5gm and extra 50gm was added 
before the needle penetration. Figure 12 shows the test set up for the setting time test.  

4.4.6. Tensile Strength Test (ASTM C 496) (25) 
Splitting tensile strength of cylindrical samples was measured in accordance with the ASTM C 
496 method. In this test, 28 days of cured samples, as shown in Figure 13, were used. Like the 
compressive strength tests, two samples were tested for each test condition and the average value 
was reported. 

 
Figure 13. Tensile strength test. 

4.4.7. Alkali-Silica Reaction (ASR) Test 
The alkali-silica reaction (ASR) test was conducted to predict the expansion of the flowable fill 
concrete in the presence of alkaline water and reactive aggregate. To conduct the test, 285-mm by 
25-mm by 25-mm mortar bars were prepared (Figure 14) from different FFC mixtures. FFC 
mixture mortar bars were molded within 2 minutes and 15 seconds. Molds were filled in two equal 
layers and each layer was compacted with a tamper until obtaining a homogenous mix. Two 
samples for each test condition were prepared and kept in the air for 48 hours. 

Afterward, mortar bars were demolded and placed in air curing for another 24 hours. Then the 
initial reading was taken. The mortar bars were then placed in 1N NaOH solution for the next 14 
days (Figure 15) and intermediate readings (expansion) were taken at 4, 8, 12, and 14 days, 
respectively. A linear variable differential transducer (LVDT) was used to take the readings with 
the help of a data storage unit (Figure 16). 
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Figure 14. Mortar bar samples. 

 
Figure 15. Curing under 1N NaOH solution for the next 14 days. 

 
Figure 16. Set up of a linear variable differential transducer (LVDT). 
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5. ANALYSIS AND FINDINGS 
In this section, the laboratory test results for five different flowable fill mixtures, and cost analysis 
on RHA modified FFC mixture were discussed. Several laboratory tests were conducted to 
evaluate the workability and performance properties of RHA modified flowable fill concrete 
mixtures. Properties of fresh FFC mixtures (flow consistency, temperature, unit weight, and air 
content) and mechanical properties (compressive and tensile strength) of hardened FFC samples 
have also been evaluated in this section. 

5.1. Flow Consistency 
Flowability is the most important characteristics of flowable fill concrete. Flowability/consistency 
allows any material to be placed without compaction, regardless of location. Flowable fill concrete 
flows around and under the utility pipes and trenches, and forms homogeneous structure, which 
cannot be obtained through soil compaction. Moreover, good consistency of an FFC mixture helps 
to reach into some inaccessible places such as underground storage tank, under the sewerage 
system, etc. Therefore, before any kind of field application, it is important to ensure the proper 
flowability of FFC mixtures. 

Though the flow consistency test in the laboratory does not completely represent the field 
condition, the engineers involved in the application of flowable fill concrete have performed this 
test. This test involves the use of a 3 in. x 6in. open-ended cylinder where it was placed on a smooth 
level surface and filled with freshly mixed flowable fill concrete. Then, the cylinder was quickly 
lifted and the average diameter of the flowable fill spread was taken. A spread diameter of 8 to 12 
in is considered workable according to ASTM and ArDOT standards. In this study, five different 
types of FFC mixtures have been prepared using fly ash and RHA samples. The flow behavior for 
each type of FFC mixtures has been examined through a number of trial mixes. 

5.1.1. Mixture-1 (70% Fly Ash and 30% Cement) 
The addition of fly ash to the flowable fill facilitate the consistency of the FFC mixture. The sand 
particles cannot flow alone because of the frictional resistance at particle-to-particle contact, which 
also hinders the flowability of any mixture. Moreover, the sand particles segregate with the 
presence of water. In that case, the presence of fly ash retains water, which ultimately helps to flow 
the FFC mixture. 

In this study, an FFC mix design containing fly ash has been collected from a ready-mix concrete 
plant. Later, in the laboratory flow experiments were performed to simulate the flow mixture. In 
this FFC mix, 70% (by wt.) of total cementitious material was fly ash and 30 % (by wt.)  was OPC. 
Figure 17 shows the three trail flow tests with different w/c ratios. 
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Figure 17. Mixture-1 flow diameter with (a) w/c-1.7, (b) w/c-1.75, and (c) w/c-1.80. 

Figure 18 shows a graphical representation between w/c Vs flow diameter. It was evident that for 
an 8-in of flow diameter, the w/c needs to be 1.7. 

 
Figure 18. Flow consistency diagram for Mixture-1. 

5.1.2. Mixture-2 (40% 600-RHA and 60% Cement) 
In mixture-2, 40% (by wt.) of the total cementitious material was 600-RHA and 60 % (by wt.) was 
OPC. Three-flow tests have been conducted with different w/c ratios. Figure 19 shows flow 
diameters from three flow tests.  



25 

 
Figure 19. Mixture-2 flow diameter with (a) w/c-2.2, (b) w/c-2.3, and (c) w/c-2.5. 

From Figure 20, it is seen that a 2.3 w/c ratio is needed to have a flow consistency of 8 in, which 
seemed to be larger than mixture-1. It was because the larger RHA particles have more surface 
area and pore size compared to the fly ash. Therefore, more water was needed to perform minimum 
flowability. 

 
Figure 20. Flow consistency diagram for Mixture-2 (40% 600-RHA and 60% Cement). 

5.1.3. Mixture-3 (60% 600-RHA and 40% Cement) 
In mixture-3, 60% (by wt.) of the total cementitious material was 600-RHA and 40 % (by wt.) was 
OPC. The flow test with this mix proportion showed that a large quantity of water was needed to 
maintain the minimum consistency. The larger amount of RHA particle in the mix required more 
water compared to Mixture-2.  
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Figure 21. Mixture-3 flow diameter with (a) w/c-2.5, (b) w/c-2.7, and (c) w/c-3.0. 

From Figure 21, it is seen that with a w/c ratio of 2.5, the FFC mixture did not flow where w/c 
ratio of 3.0 shows a flow diameter of 9.5 in. 

Figure 22 shows a graphical representation between w/c vs flow diameter of Mixture-3. It was 
found a w/c ratio of 2.78 was needed to have the minimum flow diameter (8 in). 

 
Figure 22. Flow consistency diagram for Mixture-3 (60% 600-RHA and 40% Cement). 

5.1.4. Mixture-4 (40% 150-RHA and 60% Cement) 
In mixture-4, 40% (by wt.) of the total cementitious material was 150-RHA and 60 % (by wt.) was 
OPC. From Figure 23, it is seen that with a 2.0 w/c ratio, the FFC mixture did not flow at all. With 
the increase of w/c content flow diameters were increased. 
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Figure 23. Mixture-4 flow diameter with (a) w/c-2.0, (b) w/c-2.3, and (c) w/c-2.5. 

Figure 24 shows that a w/c ratio of 2.3 is needed to perform a flow consistency of 8 in.  

 
Figure 24. Flow consistency diagram for Mixture-4 (40% 150-RHA and 60% Cement). 

5.1.5. Mixture-5 (60% 150-RHA and 40% Cement) 
In mixture 5, 60% (by wt.) of the total cementitious material was 150-RHA and 40 % (by wt.) was 
OPC. With the w/c ratio of 2.3, mixture-5 showed a flow diameter of 7 in. and with the increase 
of w/c, the flow diameter increased. A flow diameter of 13.25 in. was obtained using a w/c of 2.7 
(Figure 25). 
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Figure 25. Mixture-5 flow diameter with (a) w/c-2.3, (b) w/c-2.5, and (c) w/c-2.7. 

From Figure 26 it is seen that FFC mix with an 8-in of flow diameter needed w/c ratio of 2.37. 

 
Figure 26. Flow consistency diagram for Mixture-5 (60% 150-RHA and 40% Cement). 

5.2. Fresh Flowable Fill Concrete Properties 
The density or unit weight of flowable fill mixtures depends primarily on the unit weight of the 
filler or fine aggregate. According to the ASTM C138 method, unit weights of all modified 
flowable fill concrete mixes along with the control mix were measured. From Table 11, it is seen 
that the unit weights of the FFC mixtures made from 40% and 60% 600-RHA particles were found 
to be 114 lb/ft3 and 109 lb/ft3, respectively. The control FFC mix exhibited a unit weight of 134 
lb/ft3. The unit weights of the 40% 150-RHA and 60% 150-RHA modified FFC mixtures were 
determined as 117 lb/ft3 and 114 lb/ft3, respectively. Incorporation of RHA in flowable fill concrete 
reduced the unit weight of the FFC mix since RHA is lighter than cement and fly ash. According 
to section 206 ArDOT specification minimum unit weight of flowable fill concrete needs to be 
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110 lb/ft3. Therefore, it is evident that almost all FFC samples resulted in higher unit weight 
compared to the standard minimum. Temperatures of fresh FFC mixes were around 60oF. 

Table 11. Properties of fresh FFC mixtures. 

Types of FFC Mix Unit Weight (lb/ft3) Air Content (%) Temperature (oF) 

Mixture-1 (70% Fly Ash) 134 1.1 63 
Mixture-2 (40% 600 RHA) 114 2.5 65 
Mixture-3 (60% 600 RHA) 109 2.4 60 
Mixture-4 (40% 150 RHA) 117 0.7 60 
Mixture-5 (60% 150 RHA) 114 0.5 58 

 
Another important property of the fresh concrete mix is air content. From Table 11, it is seen that 
FFC mixtures made from 600-RHA showed higher air content. Air content of 2.5% and 2.4% were 
measured for 40% 600-RHA and 60% 600-RHA modified FFC mixtures, respectively. The FFC 
mix containing fly ash resulted in air content of 1.1%. Similarly, 0.7% and 5% air contents were 
measured for 40% 150 RHA and 60% 150 RHA modified FFC samples, respectively.  

5.3. Setting Time Test 
Figure 27, shows the preparation and placement of different types of FFC mixtures.  

 
Figure 27. Placement of different types of modified FFC mixtures. 

Figure 28 shows the penetration values of different types of FFC mixtures at Day-1, Day-2, and 
Day-3 where high penetration indicates less stability and less penetration defines higher stability 
of FFC mixtures. It was observed that penetration resistance from Day-1 to Day-3 was found to be 
increased for all types of FFC mixtures. Among all types of FFC mixtures, the Control sample 
(CFA modified FFC) showed less penetration, which defines the higher FFC mixture stability. The 
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600-RHA (40%) modified FFC mixture showed less penetration compared to the other RHA 
modified FFC mixtures. Thus, the set times for RHA-modified FFC mixtures found to be higher 
than the Control FFC mix. After 48 hours, the penetration value of any of the FFC mixes does not 
reduce significantly. Considering the outcomes of this experiment, a set of two days is reasonable 
for the Control FFC mixture, whereas a set time of three days is observed for RHA-modified FFC 
mixtures. 

 
Figure 28. Penetration of different types of FFC mixtures. 

5.4. Compressive Strength  
Compressive strength is considered one of the most important properties when considering any 
types of flowable fill concrete. Compressive strength values are required as an indicator for 
performance and long-term excavatability of the FFC mix. Minimum strength requirements are 
necessary for performance criteria, and maximum strength requirements are necessary for long-
term excavation.  

In this study, five different types of FFC mixture were produced to investigate the application of 
RHA in producing FFC mixtures. Cylindrical samples from each type of FFC mixtures were tested 
for 7, 14, 21, and 28 days curing period. Figure 28 presents the effects of curing on the development 
of compressive strength of different types of flowable fill concretes. Detailed results of the 
compressive strength tests of all FFC mixture samples are provided in Appendix B. It was also 
observed that all samples from RHA modified FFC along with the control mix (fly ash mixture) 
showed a similar trend in the development of strength over the 28-day curing period. 
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Figure 29. Compressive strength of different types flowable fill concrete. 

Mixture-1 developed a compressive strength of 56 psi at 7 days, whereas 95 psi, 96 psi, and 123 
psi were found at 14, 21, and 28 days, respectively. In the case of 600 RHA modified FFC 
(Mixture-2), compressive strength of 64 psi was found at 7 days, whereas it showed a compressive 
strength of 112 psi at 28 days. Mixture-2 showed a 9% decrease of compressive strength compared 
to Mixture-1 at 28 days of curing period. The incorporation of coarse RHA in concrete might not 
generate enough cement gel to develop strength compared to the control sample. Figure 29 shows 
the compressive strengths of all modified flowable fill concrete samples at 28 days.  

 
Figure 30. Comparison of compressive strengths of modified flowable fill concrete at 28 days. 

From Figure 30, it is observed that both samples made from 600 RHA showed less compressive 
strength compared to the FFC mixture made from fly ash. On the other hand, FFC mixture made 
with 40% 150 RHA and 60% cement showed a 19% increase in compressive strength, but the 
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addition of 60% 150 RHA resulted in lower compressive strength. In the microscopic point of 
view, both the degree of hydration and the porosity of RHA particles play important roles in 
gaining strength. The greater the volume of the pores, the lower the strength of the concrete would 
be. In addition, with the decreasing binder/space ratio (defined as the ratio of the content of C–S- 
H gel to the original volume of space), the strength would become greater (10). 

5.5. Tensile Strength Test 
Like the compressive strength, a similar trend of strength gain was observed in the split tensile 
strength test results. Figure 31 presents the tensile strengths of modified flowable fill concretes. 
Raw data of tensile strength tests can be found in Appendix C.  

 
Figure 31. Comparison of tensile strengths of modified concrete. 

It was seen that both 40% 600-RHA and 60% 600-RHA modified flowable fill concrete samples 
showed a reduction of tensile strength compared to the control sample (FFC mixture with fly ash). 
The 40% dosage level of 600-RHA and 60%-RHA modified FFC samples yielded tensile strengths 
of 15 psi and 10 psi, respectively, whereas the control had a tensile strength of 16.5 psi. Thus, 40% 
600-RHA and 60% 600-RHA samples yielded about 91% and 61% of the tensile strength of the 
control sample, respectively. Similar results were reported by Rahman et al. (9) who found that 
split tensile strength decreased with increases in the percentage of coarse RHA.  

On the contrary, the 40% 150-RHA modified FFC showed more tensile strength values compared 
to the control sample. The 40% 150-RHA modified FFC sample yielded a tensile strength of 19.5 
psi, which is 18% higher, compared to the control sample. The optimum results have been found 
for the 40% replacement with 150-RHA. 

5.6. Alkali-Silica Reaction (ASR) Tests 
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Concrete resistance to adverse weather, such as in the presence of alkaline water, can be measured 
by performing ASR tests. The ASR data for modified flowable fill concrete are presented in Figure 
32.  

 
Figure 32. ASR effect on RHA modified FFC samples. 

Figure 32 represents the ASR data for 40% 600-RHA, and 40% 150-RHA, respectively. From 
Figure 32, it is also observed that both samples exhibited expansion lower than the ASTM C1567 
recommended limit of 0.10%. This phenomenon could be explained by the particle size and 
amount of the RHA in FFC mix. The incorporation of the large amount of RHA into FFC mix was 
found to be effective in producing a sufficient homogeneous mix and ASR gel to mitigate the ASR 
problem. The SEM imaging along with the EDX analysis could be incorporated in the future to 
explain the ASR gel production phenomena inside the mortar bars. 

5.7. Field Demonstration 
Based on the findings of the current project work, the research team organized a workshop and 
completed two field demonstrator projects in Jonesboro, Arkansas. The first demonstration project 
included a workshop on the application of RHA in flowable fill on November 27, 2018. The 
Arkansas Ready Mix Concrete Association (ARMCA) has arranged all necessary supports to make 
the workshop successful. The team delivered an oral presentation based on the laboratory test 
results of RHA-modified regular concrete and FFC mixtures. Several ArDOT and City Engineers, 
local ready-mix concrete company engineers, and plant operators from northeast Arkansas were 
present during the presentation (Figure 33). 
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Figure 33. Presentation session in front of professional personnel. 

After the oral presentation session, a field mixing and placement operation of an FFC mix was 
performed. An FFC mix with 40% 600-RHA and 60% cement was prepared and placed in a small 
trench (48-inch x 9-inch x 8-inch) containing a 2 in. diameter hollow pipe. Figure 34 shows the 
preparation of the FFC mixture. 

 
Figure 34. Preparation of an FFC mixture containing 40% 600-RHA and 60% cement. 
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Figure 35 shows the top and sectional view of the trench. It is seen that the trench has 48 in. length, 
9 in. width, and 8 in. depth. The hollow pipe was placed 1 in.  from the bottom of the trench.  

 
Figure 35. Plan and cross-sectional view of the trench. 

Figure 36 shows the FFC mixture placement pit with a hollow pipe.  

 
Figure 36. FFC placement pit site. 
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After the mixing preparation, FFC mixture was placed on the pit site (Figure 37).  

 
Figure 37. FFC mixture placing. 

The research team monitored the placement site for a certain time. It was seen that after 3 days, 
the FFC mixture was strong enough to stand on. Besides the technology transfer of gained 
knowledge, this session also helped the research team to engage the audience in open discussion 
on current research on assessing the feasibility of RHA as a construction material in Arkansas. The 
second field demonstration project (a trench similar to the first demonstration site) was conducted 
at a parking lot of A-State’s Facility Management on July 24th, 2019. In this project, 40% 150-
RHA and 60% cement, and appropriate amounts of sand and water, as per the mix design sheet, 
were used. After successful mixing and placement of the FFC mixture, the research team 
monitored its performance, which was found to be satisfactory. The research team will continue 
to monitor these sites and record any issues that may arise in the future.  

5.8. Cost Analysis 
The cost comparison between the conventional CLSM and RHA modified FFC was performed on 
a cross-drain trench site. The dimensions of the trench were 100-foot length, six-foot height, and 
an average of six-foot width. In the cost analysis procedure, only the cost of cementitious material 
in the FFC mixture was considered. Other factors such as labor (including fringe benefits), 
equipment (including fuel, lubricants, filters), construction liability, remedial work, productivity, 
inspection, and testing were being considered uninfluential in a cost comparison of FFC mixtures.   

According to ArDOT specification, the conventional flowable fill material was considered to be 
produced using fly ash and cement. The cost data of conventional flowable fill material was 
collected from ArDOT material pricing data. The cost for per cubic yard of FFC material was 
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considered as $196.04 as per ArDOT price data. A 60% 600-RHA flowable fill mixture cost was 
analyzed and the unit price was found to be the $136.04/cubic yard. Table 12 shows the total cost 
comparison between the conventional FFC mixture and RHA modified FFC mixture.  

Table 12. Cost comparison between conventional FFC mix and RHA modified FFC mix. 
Types of FFC Mix Total Required FFC 

(Cubic Yard) 
Unit Price  

($/ Per Cu. yard) 
Total Cost 

($) 
Conventional FFC mix 133.33 196.04 26,138 

60% 600 RHA FFC mix 133.33 136.04 18,138 
 
This cost comparison was generated using identical volumes flowable fill materials. Table 12 
shows that the total cost of conventional flowable fill is significantly larger than the RHA modified 
FFC mix. RHA modified FFC mixture resulted in 30% less of total cost compared to the 
conventional FFC mixture. Therefore, it can be concluded that RHA modified CLSM/ flowable 
fill material is more economically beneficial compared to other FFC mixture. 

5.9. Life-Cycle Cost Analysis 
The overall long-term economic efficiency between RHA modified flowable fill concrete and 
regular flowable fill concrete have been compared through a life-cycle cost analysis (LCCA). 
Usually, in LCCA, a net present worth (NPW) represents all activity costs considering a discount 
rate over time. In this study, “LCCA Express” software was used to represent the LCCA analysis. 
The following two example scenarios have considered for LCCA in this study: 

1. Using conventional FFC in the subgrade of asphalt pavement construction; and 
2. Using RHA modified FFC in the subgrade of asphalt pavement construction. 

In the process of comparing different types of FFC, LCCA Express does not directly quantify the 
longevity of the FFC. To evaluate the expected improvement of the pavement, a mechanistic-
empirical prediction model was used for expected service life. For the construction of asphalt 
pavement, assumptions were made based on previous research. Figures 38 and 39 show the 
pavement design conditions and other traffic properties, which were considered for performing 
life cycle analysis. 
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Figure 38. Assumed pavement criteria for performing LCCA. 

 
Figure 39. Assumed work zone data for performing LCCA. 

Figure 38 shows that a 1-mile road of 24-foot width was considered in this study. An analysis 
period of 40 years with a discount rate of 4% was also considered. Figure 39 shows that a 4% 
traffic growth 4000 AADT was assumed for the work zone data. The pavement dimensions and 
traffic criteria remained the same for two LCCA analyses. A traffic type of “Rural” was considered 
because RHA-modified FFC is expected to be placed in the subgrade of rural roadways (e.g., 
County Roads) before approved on urban roads or interstate systems.  
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Figure 40. Regular FFC used to construct asphalt pavement. 

 
Figure 41. RHA modified FFC used to construct asphalt pavement. 
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Figure 40 shows the net present worth value of example Scenario 1. For Scenario 1, resurfacing 
was scheduled for years 20. The unmodified FFC resulted in a net present cost of $883,052/mile.  
On the other hand, for the RHA-modified FFC (Scenario 2), the net present value was found to be 
$612,785 (Figure 41), which was about 30% more economical compared to the unmodified FFC.  
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6. CONCLUSIONS 
Rice Husk Ash (RHA) is considered agricultural waste material, but it has the potential to be used 
as a supplementary cementitious material. This study presents findings from a laboratory 
experimental plan on RHA-modified flowable fill concrete (FFC) mixtures followed by a field 
demonstration. The laboratory experimental plan of this study includes physical and chemical 
properties of raw materials, workability of fresh FFC mixture, and strength properties of hardened 
FFC samples. The literature review of this study has provided in-depth information on flowable 
fill technology, type, specifications, mix designs, tests methods, current studies, and different 
application of FFC. A number of FFC mixtures (trials) were prepared to understand the flow 
behavior of modified FFC mixtures. It was found that RHA modified FFC mixtures required more 
water compared to the regular FFC to maintain the same flowability. The RHA-modified FFC 
mixtures were found to be lighter than the Control (CFA-modified FFC), but they met the ARDOT 
specified unit weight requirements. The fresh concrete properties of FFC mixtures were also found 
to be acceptable.  

Strength properties (compressive and tensile) indicated that the use of 600-RHA in producing FFC 
might lower the expected compressive strength of FFC mixtures. On the other hand, 40% addition 
of 150 RHA particles in producing FFC would increase the strength properties. Two field 
demonstration sites constructed with RHA-modified FFC appeared to be holding well without any 
visual cracks and deformities. Moreover, cost analysis between RHA modified FFC and regular 
FFC suggested that RHA modified FFC would be about 30% more economically friendly. It is 
recommended to monitor the test sections for long-term durability and performance.  
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APPENDIX A: GRAIN SIZE DISTRIBUTION 

 
Figure A.1. Grain size distribution of 600-RHA. 
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Figure A.2. Grain size distribution of 150-RHA. 
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APPENDIX B: COMPRESSIVE STRENGTH TEST RESULTS 

Table B.1. Compressive strength of 600-RHA modified FFC. 

Days Control 40% 600-RHA  
(psi) 

60% 600-RHA(psi) 

7 56 64.0 35.0 
14 95 82.0 41.0 
21 96 88.0 46.5 
28 123 112.0 51.0 

 

Table B.2. Compressive strength of 150-RHA modified FFC. 

Days Control 40% 150-RHA(psi) 60% 150-RHA(psi) 
7 56 75.0 39.0 
14 95 91.0 50.0 
21 96 130.0 72.0 
28 123 147.0 88.0 
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APPENDIX C: TENSILE STRENGTH TEST RESULTS 

Table C.1. Tensile strength of modified FFC. 

Types of 
Pozzolan 

Tensile Strength (psi) 

Control 16.5 
40% 600-RHA 15 
60% 600-RHA 10 
40% 150-RHA 19.5 
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